# Proof carbon dating is wrong

*19-Sep-2015 20:16*

Let's say I have a bunch of, let's say these are all atoms. And let's say we're talking about the type of decay where an atom turns into another atom. Or maybe positron emission turning protons into neutrons. And we've talked about moles and, you know, one gram of carbon-12-- I'm sorry, 12 grams-- 12 grams of carbon-12 has one mole of carbon-12 in it. So you might get a question like, I start with, oh I don't know, let's say I start with 80 grams of something with, let's just call it x, and it has a half-life of two years.

And maybe not carbon-12, maybe we're talking about carbon-14 or something. And then nothing happens for a long time, a long time, and all of a sudden two more guys decay. And the atomic number defines the carbon, because it has six protons. If they say that it's half-life is 5,740 years, that means that if on day one we start off with 10 grams of pure carbon-14, after 5,740 years, half of this will have turned into nitrogen-14, by beta decay. What happens over that 5,740 years is that, probabilistically, some of these guys just start turning into nitrogen randomly, at random points. So if we go to another half-life, if we go another half-life from there, I had five grams of carbon-14. So now we have seven and a half grams of nitrogen-14. This exact atom, you just know that it had a 50% chance of turning into a nitrogen. So with that said, let's go back to the question of how do we know if one of these guys are going to decay in some way. That, you know, maybe this guy will decay this second. Remember, isotopes, if there's carbon, can come in 12, with an atomic mass number of 12, or with 14, or I mean, there's different isotopes of different elements. So the carbon-14 version, or this isotope of carbon, let's say we start with 10 grams. Well we said that during a half-life, 5,740 years in the case of carbon-14-- all different elements have a different half-life, if they're radioactive-- over 5,740 years there's a 50%-- and if I just look at any one atom-- there's a 50% chance it'll decay. Now after another half-life-- you can ignore all my little, actually let me erase some of this up here. So we'll have even more conversion into nitrogen-14. So now we're only left with 2.5 grams of c-14. Well we have another two and a half went to nitrogen. So after one half-life, if you're just looking at one atom after 5,740 years, you don't know whether this turned into a nitrogen or not. SAL: In the last video we saw all sorts of different types of isotopes of atoms experiencing radioactive decay and turning into other atoms or releasing different types of particles. But the question is, when does an atom or nucleus decide to decay? So it could either be beta decay, which would release electrons from the neutrons and turn them into protons. And normally when we have any small amount of any element, we really have huge amounts of atoms of that element. That's 6.02 times 10 to the 23rd carbon-12 atoms. This is more than we can, than my head can really grasp around how large of a number this is.

What's going to happen after one billion years? And then you didn't build your time machine well.

It'll probably still be carbon, but there's some probability that after one second it will have already turned into nitrogen-14.